
Storage Resource Managers:
Middleware Components for Grid Storage

Arie Shoshani, Alex Sim, Junmin Gu

Lawrence Berkeley National Laboratory

Abstract

The amount of scientific data generated by simulations or collected from large scale
experiments have reached levels that cannot be stored in the researcher’s workstation or even
in his/her local computer center. Such data are vital to large scientific collaborations
dispersed over wide-area networks. In the past, the concept of a Grid infrastructure [1]
mainly emphasized the computational aspect of supporting large distributed computational
tasks, and optimizing the use of the network by using bandwidth reservation techniques. In
this paper we discuss the concept of Storage Resource Managers (SRMs) as components that
complement this with the support for the storage management of large distributed datasets.
The access to data is becoming the main bottleneck in such “data intensive” applications
because the data cannot be replicated in all sites. SRMs can be used to dynamically optimize
the use of storage resource to help unclog this bottleneck.

1. What are Storage Resource Managers?

The term “storage resource” refers to any storage system that can be shared by multiple
clients. We use the term “client” here to refer to a user or a software program that runs on
behalf of a user. Storage Resource Managers (SRMs) are middelware software modules
whose purpose is to manage in a dynamic fashion what should reside on the storage resource
at any one time. There are several types of SRMs: Disk Resource Managers (DRMs), Tape
Resource Managers (TRMs), and Hierarchical Resource Managers (HRMs). We explain
each next.

A Disk Resource Manager (DRM) manages dynamically a single shared disk cache. This
disk cache can be a single disk, a collection of disks, or a RAID system. The disk cache is
available to the client through the operating system that provides a file system view of the
disk cache, with the usual capability to create directories, open, read, write, and close files.
However, space is not pre-allocated to clients. Rather, the amount of space allocated to each
client is managed dynamically by the DRM based on requests by the client. The function of a
DRM is to manage this cache using some policy that can be set by the administrator of the
disk cache. The policy may restrict the number of simultaneous requests by users, or may
give preferential access to clients based on their assigned priority. In addition, a DRM may
perform operations to get files from other SRMs on the grid. This capability will become
clear later when we describe how DRMs are used in a data grid.

A Tape Resource Manager (TRM) is a middleware layer that interfaces to systems that
manage robotic tapes. The tapes are accessible to a client through fairly sophisticated Mass
Storage Systems (MSSs) such as HPSS, Unitree, Enstore, etc. Such systems usually have a
disk cache that is used to stage files temporarily before transferring them to clients. MSSs

typically provide a client with a file system view and a directory structure, but do not allow
dynamic open, read, write, and close to files. Instead they provide some way to transfer files
to the client space, using transfer protocols such as FTP, and various variants of FTP (e.g.
Parallel FTP, called PFTP, in HPSS). The TRM’s function is to accept requests for file
transfers from clients, queue such requests in case the MSS is busy or temporarily down, and
apply a policy on the use of the MSS resource. As in the case of a DRM, the policy may
restrict the number of simultaneous transfer requests by users, or may give preferential access
to clients based on their assigned priority.

A Hierarchical Storage Manager (HRM) is a TRM that has a staging disk cache for its use. It
can use the disk cache for pre-staging files for clients, and for sharing files between clients.
This functionality can be very useful in a data grid, since a request from a client may be for
multiple files. Even if the client can only process one file at a time, the HRM can use its
cache to pre-stage the next files. Furthermore, the transfer of large files on a shared wide area
network may be sufficiently slow, that while a file is being transferred, another can be staged
from tape. Because robotic tape systems are mechanical in nature, they have a latency of
mounting a tape and seeking to the location of a file. Pre-staging can help eliminate this
latency. Another advantage of using a staging disk in an HRM is that it can be used for file
sharing. Given that multiple clients can make a request for files to an HRM, the HRM can
choose to leave a file longer in cache so that it can be shared with other clients based on use
history or anticipated requests. The HRM design is based in part on experience in a previous
project reported in [2].

In general, it is best if SRMs are shared by a community of users that are likely to access the
same files. They can be designed to monitor file access history and maximize sharing of files
by keeping the most popular files in the disk cache longer.

2. The role of SRMs in a Data Grid

Suppose that a client runs at some site and wishes to analyze data stored in files located in
various sites on the grid. First, the client must have some way of determining which files it
needs to access. Checking a file catalog, using some index, or even using a database system
can accomplish this step. We refer to this step as “request interpretation”. The information
used in this step is commonly referred to as metadata, since the result of this step will be a set
of logical file names that need to be accessed. The second step is to find out for each logical
file where it physically resides or replicated. Note that a single logical file can be replicated
in multiple sites if it was accessed previously by clients at these sites. Files can also be pre-
replicated into sites based on expected use. In a grid environment, this information exists in a
“replica catalog”, a catalog that maps a single logical file name to multiple physical files
names located in various sites. The physical file name includes a name of the site, the
directory path on that system, and the file name.

In many grid environments today, the burden for the above work is being thrust on the clients.
Therefore, it is now recognized that such tasks can be delegated to middleware components to
provide these services. A “request manager” is the term used to refer to such services. The
request manager performs “request planning” based on some strategy, and then a “request

execution” of the plan. There are three options to consider: either move the application
program to the site that has the file, move the file to the client’s site, or move both the
program and the data to another site for processing. All three possibilities are valid, and
much of the middleware development addresses this issue. In all these cases, SRMs play an
important role. In the case that the program moves to the site where the file exists, it is
necessary to “pin” the file in that site; that is, to request that the file remains in that site, so
that when the program is initialized the file in found in the cache. When the program
completes, the file can be “released”. In the case that the file needs to be transferred from a
source site to target site (either to the client’s site, or to another site), it is necessary to “pin”
the file in the source site, to reserve the space in the target site, and maintain this state till the
transfer to the target site is complete. Then the “pin” can be released. Here, the SRM at the
source site has the role of managing the “pinning”, and the SRM at the target site has the role
of allocating space (i.e. making space by removing other files if necessary), and reserving the
space till the transfer completes.

SRMs need to deal also with system failures, so that space reservations do not persist forever,
and “pins” do not persist in case that a “release” is not performed. The concept of “pinning a
file” is central to SRMs and will be discussed further later.

3. Advantages of using SRMs

The main advantage of an SRM is that it provides smooth synchronization between shared
resources by pinning files, releasing files, and allocating space dynamically on an “as-
needed” basis. But, in addition, they can eliminate unnecessary burden from the client. First,
if the storage system is busy, SRMs can queue requests, rather than refuse a request. Instead
of the client trying over and over again, till the request is accepted, an SRM can instead queue
the request, and provide the client with a time estimate based on the length of the queue. This
is especially useful when the latency is large such as for a reading a file from tape. If the wait
is too long, the client can choose to access the file from another site, or wait for its turn.
Similarly, a shared disk resource can be temporarily full, waiting for users to finish
processing files, and queuing requests is a better alternative to simply refuse the request.

A second advantage to the client is that SRMs can insulate them from storage systems failure.
This is an important capability that is especially useful for HRMs since MSSs are complex
systems that fail from time to time, and may become temporarily unavailable. For long
lasting jobs accessing many files, which is typical of scientific applications, it is prohibitive to
abort and restart a job. Typically, the burden of dealing with an MSS’s temporary failure
falls on the client. Instead, an HRM can insulate clients from such failures, by monitoring the
transfer to the HRM’s disk, and if failures occur, the HRM can wait for the MSS to recover,
and re-stage the file. All that the client perceives is a slower response. Experience with this
capability was shown to be quite useful in real usage [2].

4. “Pinning” and “two-phase pinning”

The concept of pinning is similar to locking. However, while locking is associated with the
content of a file to coordinate reading and writing, pinning is associated with the location of

the file to insure that a file stays in that location. Unlike a lock, which has to be released, a
"pin" is temporary, in that it has a time-out period associated with it, and the "pin" is
automatically released at the end of that time-out period. The action of “pinning a file” results
in a “soft guarantee” that the file will stay in a disk cache for a pre-specified length of time.
The length of the “pinning time” is a policy determined by the disk cache manager. The need
for pinning stems from the inherently unreliable behavior of the data grid (because of system
failures, network failures, or irresponsible clients). Since we cannot count on pins to be
released, we use the pinning time-out as a way to avoid pinning of files forever.

Two-phase pinning is akin to the well known “two-phase locking” technique used extensively
in database systems. While two-phase locking is used very successfully to synchronize
writing of files and to avoid deadlocks, two-phase pinning is used to synchronize requests for
multiple files concurrently; that is, if the client needs several files at the same time, it can first
pin these files, and only then execute the transfers for all files, then releasing them as soon as
each is transferred. We note, that even if file replicas are read-only, a deadlock as a result of
pinned files can occur if we allow requests for multiple files concurrently. However, if we
assume that file requests are asynchronous and that time-outs that release files are enforced,
pin-locks are eventually resolved because pinned files are released after they time-out.
Nevertheless, two-phase pinning is a useful technique to avoid system thrashing by
repeatedly pinning and pre-emptying pins. It requires coordination between the SRMs.

5. Design of “Read” and “Write” functionality of SRMs

When a request to read a file is made to an SRM, the SRM may already have the file in its
cache. In this case it returns the address of the file in its cache. The client can then read the
file directly from the disk cache (if it has access permission), or can copy or transfer the file
into its local disk. In either case, the SRM will be expected to pin the file in cache for the
client for a period of time. A well-behaved client will be expected to “release” the file when
it is done with it. This case applies to both DRMs and HRMs.

If the file is not in the disk cache, the SRM will be expected to get the file from its source
location. For a DRM this means getting the file from some remote location. For an HRM,
this means getting the file from the MSS. This is another capability that SRMs provide to
alleviate this task from the client. Rather than return to the client with “file not found”, the
SRM provides the service of getting the file from its source location. Since getting a file
from a remote location or a tape system may take a relatively long time, it should be possible
for the client to make a non-blocking request. To accommodate this possibility the SRMs
provide a call-back function that notify the client when a requested file arrives in its disk
cache and the location of that file. In case that the client cannot be called back since it does
not have a server, SRMs also provide a “status” function call that the client can use to find
out when the file arrives. The status function can return estimates on the file arrival time if
the file has not arrived yet.

HRMs can also maintain a queue for scheduling the file staging from tape to disk by the
MSS. This is especially needed if the MSS is temporarily busy. If a queue exists, then the
HRM puts the request at the end of the queue. Otherwise, it schedules its staging

immediately. Like a DRM, the HRM needs to notify the client that the file was staged by
issuing a call_back, or the client can find that out by using “status”.

A request to “write” a file requires a different functionality. In the case of a DRM, if a file
size is provided, then that space is allocated, and the client can write the file to it. Otherwise,
a default size is assumed, and the available space is adjusted after the file is written. In the
case of an HRM, the file is first written to its disk cache in exactly the same way as the DRM
description above. The HRM then notifies the client that the file has arrived to its disk using
a call_back, then it schedules it to be archived to tape by the MSS. After the file is archived
by the MSS, the SRM notifies the client again using a call_back. Thus, the HRM’s disk
cache is serving as a temporary buffer for files being written to tape. The advantage of this
functionality by HRM is that writing files to a MSS can be performed quickly to the HRMs
disk cache, and then archived as a background job to tape. In this way the HRM can
eliminate the burden from the client to deal with a busy MSS as well as dealing with
temporary failures of the MSS system.

6. Status

We have implemented several versions of a DRMas well as a HRM that interfaces to HPSS.
The HRM is basically a TRM that deals with reading/writing files from/to HPSS, which
embeds a DRM in it for managing its disk cache. These components have been incorporated
into the Particle Physics Data Grid (PPDG) project to perform grid replication functions [3].
The HRM was also used in a demo for SuperComputing 2000 as part of an infrastructure to
get files from multiple locations for an Earth Science Grid application (ESG) [4]. The SRMs
use grid-enabled secure file transfer services provided by the Globus project [5], called
gridFTP. We are now evaluating several “cache replacement policies” to be used by DRMs,
by both conducting simulations and setting up real testbeds.

7. Conclusion

We discussed in this paper the concept of Storage Resource Managers (SRMs), and argued
that they have an important role in streamlining grid functionality and making it possible for
storage resources to be managed dynamically. While static management of resources is
possible, it requires continuous human intervention to determine where and when file replicas
should reside. SRMs make it possible to manage the grid storage resources based on the
actual access patterns. In addition, SRMs can be used to impose local policies as to who can
use the resources, and how to allocated the resources to the grid users. We also introduced
the concept of "pinning" as the mechanism of requesting that files stay in the storage resource
until a file transfer or a computation takes place. Pinning allows the operation of the
coordinated transfer of multiple files to be performed as a "2-phase pinning" process: pin the
files, transfer, and release pins. Several versions of prototype SRMs have been built and used
in test cases as part of the Particle Physics Data Grid (PPDG) and Earth Science Data Grid
(ESG) projects. The emerging concepts and interfaces seem to nicely complement other grid
middleware services being developed by various grid projects, such as providing efficient and
secure file transfer, replica catalogs, and allocating compute resources.

References

[1] The Grid: Blueprint for a New Computing Infrastructure, Edited by Ian Foster and Carl
Kesselman, Morgan Kaufmann Publishers, July 1998.

[2] Access Coordination of Tertiary Storage for High Energy Physics Application, L. M.
Bernardo, A. Shoshani, A. Sim, H. Nordberg (MSS 2000).

[3] Particle Physics Data Grid (PPDG), http://www.ppdg.net/

[4] Earth Science Grid (ESG), http://gizmo.lbl.gov/esg

[5] The Globus Project, http://www.globus.org

http://www.ppdg.net/
http://gizmo.lbl.gov/esg
http://www.globus.org/

	Storage Resource Managers:
	
	Middleware Components for Grid Storage

	1. What are Storage Resource Managers?
	
	3. Advantages of using SRMs

